Get keys for all assays/reductions in an object
all_keys.Rd
Returns the "keys" of all reductions and modalities/assays/experiments in an object, which are used to fetch data via the vars
parameter of fetch_data
. To fetch features from an object, use the key representing the modality the feature was recorded in, plus an underscore and the feature name. To fetch reduction coordinates, use the key of the reduction, plus an underscore, and a number representing the dimension for which to retrieve coordinates.
Usage
all_keys(object)
# S3 method for class 'Seurat'
all_keys(object)
# S3 method for class 'SingleCellExperiment'
all_keys(object)
# S3 method for class 'AnnDataR6'
all_keys(object)
Value
a named character vector. The names of the vector are names of the modalities and reductions in the object, and the values are the corresponding keys to be passed to fetch_data. For Seurat objects, a key for metadata will also be displayed.
Methods (by class)
all_keys(Seurat)
: Seurat objectsall_keys(SingleCellExperiment)
: SingleCellExperiment objectsall_keys(AnnDataR6)
: SingleCellExperiment objects
Examples
## View keys ##
# Seurat objects
all_keys(AML_Seurat)
#> meta.data RNA AB pca umap
#> "md_" "rna_" "ab_" "PC_" "UMAP_"
# SingleCellExperiment objects
all_keys(AML_SCE())
#> RNA AB PCA UMAP
#> "RNA" "AB" "PCA" "UMAP"
# anndata objects
all_keys(AML_h5ad())
#> X X_pca X_umap protein
#> "X" "X_pca" "X_umap" "protein"
## Use of keys to construct fetch_data query
# Fetch a feature from the "protein"
# modality using its key from above
fetch_data(
AML_h5ad(),
vars = "protein_CD9-AB"
) |> str()
#> 'data.frame': 250 obs. of 1 variable:
#> $ protein_CD9-AB: num 1.247 0.982 2.661 0.565 0.674 ...
#> - attr(*, "pandas.index")=Index(['487013_1', '39207_1', '861619_1', '561110_1', '283967_1', '422573_1',
#> '453256_1', '531766_1', '796968_1', '624345_1',
#> ...
#> '883406_2', '662718_2', '691696_2', '431743_2', '158371_2', '679107_2',
#> '844492_2', '729807_2', '545562_2', '849364_2'],
#> dtype='object', length=250)
# Fetch reduction coordinates using
# the key for the UMAP reduction
fetch_data(
AML_h5ad(),
vars = c("X_umap_1", "X_umap_2")
) |> str()
#> 'data.frame': 250 obs. of 2 variables:
#> $ X_umap_1: num -1.64 -1.5 -1.45 -1.38 -1.41 ...
#> $ X_umap_2: num 9.9 10.13 10.21 10.51 3.39 ...
#> - attr(*, "pandas.index")=Index(['487013_1', '39207_1', '861619_1', '561110_1', '283967_1', '422573_1',
#> '453256_1', '531766_1', '796968_1', '624345_1',
#> ...
#> '883406_2', '662718_2', '691696_2', '431743_2', '158371_2', '679107_2',
#> '844492_2', '729807_2', '545562_2', '849364_2'],
#> dtype='object', length=250)