Fetch metadata from single-cell objects
fetch_metadata.Rd
Returns object metadata for a specified set of cells.
Usage
fetch_metadata(
object,
vars = NULL,
cells = NULL,
full_table = FALSE,
return_class = "dataframe"
)
# S3 method for class 'Seurat'
fetch_metadata(
object,
vars = NULL,
cells = NULL,
full_table = FALSE,
return_class = "dataframe"
)
# S3 method for class 'SingleCellExperiment'
fetch_metadata(
object,
vars = NULL,
cells = NULL,
full_table = FALSE,
return_class = "dataframe"
)
# S3 method for class 'AnnDataR6'
fetch_metadata(
object,
vars = NULL,
cells = NULL,
full_table = FALSE,
return_class = "dataframe"
)
Arguments
- object
A single cell object. Currently, Seurat, SingleCellExpleriment, and anndata objects are supported.
- vars
metadata variables to pull from object. This must be defined, unless "full_table" is set to
TRUE
.- cells
cell IDs for which to pull metadata. If
NULL
, coordinates will be returned from all cells in the object. Cell IDs can be generated withfetch_cells()
.- full_table
if
TRUE
, return the entire metadata table. This isFALSE
by default.- return_class
class of data returned. Set to "dataframe" by default to return a data.frame, and may also be set to "vector" to yield a vector of values. This is ignored if "full_table" is set to
TRUE
.
Methods (by class)
fetch_metadata(Seurat)
: Seurat objectsfetch_metadata(SingleCellExperiment)
: SingleCellExperiment objectsfetch_metadata(AnnDataR6)
: AnnDataR6 objects
Examples
# Return several metadata variables as a data.frame
fetch_metadata(
AML_Seurat,
vars = c("condensed_cell_type", "Batch", "nCount_RNA")
) |> str()
#> 'data.frame': 250 obs. of 3 variables:
#> $ condensed_cell_type: chr "Plasma cells" "Plasma cells" "Plasma cells" "Plasma cells" ...
#> $ Batch : chr "BM_200AB" "BM_200AB" "BM_200AB" "BM_200AB" ...
#> $ nCount_RNA : num 10863 8403 8100 8151 8828 ...
# Return data for a single metadata variable as a vector
fetch_metadata(
AML_Seurat,
vars = "condensed_cell_type",
return_class = "vector"
) |> str()
#> Named chr [1:250] "Plasma cells" "Plasma cells" "Plasma cells" ...
#> - attr(*, "names")= chr [1:250] "487013_1" "39207_1" "861619_1" "561110_1" ...
# Return all metadata
fetch_metadata(
AML_Seurat,
full_table = TRUE
) |> str()
#> 'data.frame': 250 obs. of 29 variables:
#> $ orig.ident : chr "SeuratProject" "SeuratProject" "SeuratProject" "SeuratProject" ...
#> $ nCount_RNA : num 10863 8403 8100 8151 8828 ...
#> $ nFeature_RNA : int 228 210 196 179 242 147 264 232 229 246 ...
#> $ nCount_AB : num 25709 31367 28166 14440 8203 ...
#> $ nFeature_AB : int 195 195 195 194 191 192 194 192 193 194 ...
#> $ nCount_BOTH : num 36572 39770 36266 22591 17031 ...
#> $ nFeature_BOTH : int 423 405 391 373 433 339 458 424 422 440 ...
#> $ BOTH_snn_res.0.9 : chr "17" "17" "17" "17" ...
#> $ seurat_clusters : Factor w/ 15 levels "0","1","2","3",..: 3 3 3 3 6 3 6 6 6 6 ...
#> $ Prediction_Ind : chr "Plasma Cells" "Plasma Cells" "Plasma Cells" "Plasma Cells" ...
#> $ BOTH_snn_res.1 : chr "12" "26" "26" "26" ...
#> $ ClusterID : chr "12" "26" "26" "26" ...
#> $ Batch : chr "BM_200AB" "BM_200AB" "BM_200AB" "BM_200AB" ...
#> $ x : num -9.56 -9.53 -9.56 -9.53 -4.81 ...
#> $ y : num 1.49 1.42 1.56 1.47 -2.44 ...
#> $ x_mean : num -9.56 -9.51 -9.53 -9.48 -4.74 ...
#> $ y_mean : num 1.49 1.43 1.5 1.43 -2.49 ...
#> $ cor : num 0.852 0.856 0.878 0.855 0.923 ...
#> $ ct : Factor w/ 38 levels "Plasma cells",..: 1 1 1 1 2 1 7 6 6 15 ...
#> $ prop : num 1 1 1 1 1 1 1 0.8 0.8 1 ...
#> $ meandist : num 0.045 0.0835 0.1062 0.1264 0.4902 ...
#> $ cDC : num NaN NaN NaN NaN NaN ...
#> $ B.cells : num NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...
#> $ Myelocytes : num NaN NaN NaN NaN NaN ...
#> $ Erythroid : num NaN NaN NaN NaN 7.98 ...
#> $ Megakaryocte : num NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN ...
#> $ Ident : Factor w/ 28 levels "Plasma cells",..: 1 1 1 1 2 1 4 4 4 4 ...
#> $ RNA_snn_res.0.4 : Factor w/ 15 levels "0","1","2","3",..: 3 3 3 3 6 3 6 6 6 6 ...
#> $ condensed_cell_type: chr "Plasma cells" "Plasma cells" "Plasma cells" "Plasma cells" ...